Progesterone blocks estrogen-induced DNA synthesis through the inhibition of replication licensing.

نویسندگان

  • Haiyan Pan
  • Yan Deng
  • Jeffrey W Pollard
چکیده

In the uterus, progesterone (P4) acts early in G1 as a physiological inhibitor of estradiol-17beta (E2)-induced epithelial cell proliferation. Gene expression profiling of uterine epithelial cell RNA isolated 3 h after hormonal treatment of ovariectomized mice revealed the co-coordinate down-regulation by P4 of >20 genes whose functions are associated with DNA replication. This group included all of the minichromosome maintenance (MCM) proteins that are required for DNA replication licensing. E2 regulated loading of these MCM proteins onto chromatin in parallel with its induction of DNA synthesis. E2 caused this chromatin loading by retention of MCM proteins in the nucleus and through the induction of the loading factor Cdt1, which is necessary for the MCM heterohexamer to bind to the origin of DNA replication. P4 dramatically reduced the binding of the MCMs to chromatin by a number of mechanisms. First, MCM mRNA and protein abundance was down-regulated. Second, P4 inhibited the E2 induction of Cdt1. Third, P4 treatment sequestered the normally nuclear MCM proteins into the cytoplasm. This reduced MCM binding resulted in the complete inhibition of E2-induced DNA synthesis by P4. These data reveal mechanisms not only for female sex steroid hormone action but also in the regulation of DNA replication licensing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KLF15 negatively regulates estrogen-induced epithelial cell proliferation by inhibition of DNA replication licensing.

In the epithelial compartment of the uterus, estradiol-17β (E(2)) induces cell proliferation while progesterone (P(4)) inhibits this response and causes differentiation of the cells. In this study, we identified the mechanism whereby E(2) and P(4) reciprocally regulate the expression of minichromosome maintenance (MCM)-2, a protein that is an essential component of the hexameric MCM-2 to 7 comp...

متن کامل

Identification of an arginine-rich motif in human papillomavirus type 1 E1;E4 protein necessary for E4-mediated inhibition of cellular DNA synthesis in vitro and in cells.

Productive infections by human papillomaviruses (HPVs) are restricted to nondividing, differentiated keratinocytes. HPV early proteins E6 and E7 deregulate cell cycle progression and activate the host cell DNA replication machinery in these cells, changes essential for virus synthesis. Productive virus replication is accompanied by abundant expression of the HPV E4 protein. Expression of HPV1 E...

متن کامل

The Cellular Protein MCM3AP Is Required for Inhibition of Cellular DNA Synthesis by the IE86 Protein of Human Cytomegalovirus

Like all DNA viruses, human cytomegalovirus (HCMV) infection is known to result in profound effects on host cell cycle. Infection of fibroblasts with HCMV is known to induce an advance in cell cycle through the G(0)-G(1) phase and then a subsequent arrest of cell cycle in early S-phase, presumably resulting in a cellular environment optimum for high levels of viral DNA replication whilst preclu...

متن کامل

Human cytomegalovirus infection leads to accumulation of geminin and inhibition of the licensing of cellular DNA replication.

Previous studies have shown that infection of G(0)-synchronized human fibroblasts by human cytomegalovirus (HCMV) results in a block to cellular DNA synthesis. In this study, we have examined the effect of viral infection on the formation of the host cell DNA prereplication complex (pre-RC). We found that the Cdc6 protein level was significantly upregulated in the virus-infected cells and that ...

متن کامل

Progestins inhibit the growth of MDA-MB-231 cells transfected with progesterone receptor complementary DNA.

Because progesterone exerts its effects mainly via estrogen-dependent progesterone receptor (PgR), the expression of progesterone's effects may be overshadowed by the priming effect of estrogen. PgR expression vectors were transfected into estrogen receptor (ER)-alpha and PgR-negative breast cancer cells MDA-MB-231; thus the functions of progesterone could be studied independent of estrogens an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 38  شماره 

صفحات  -

تاریخ انتشار 2006